Bypassing Feature Squeezing by Increasing Adversary Strength

03/27/2018
by   Yash Sharma, et al.
0

Feature Squeezing is a recently proposed defense method which reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. It has been shown that feature squeezing defenses can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks. However, we demonstrate on the MNIST and CIFAR-10 datasets that by increasing the adversary strength of said state-of-the-art attacks, one can bypass the detection framework with adversarial examples of minimal visual distortion. These results suggest for proposed defenses to validate against stronger attack configurations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset