Byzantine Resilience at Swarm Scale: A Decentralized Blocklist Protocol from Inter-robot Accusations
The Weighted-Mean Subsequence Reduced (W-MSR) algorithm, the state-of-the-art method for Byzantine-resilient design of decentralized multi-robot systems, is based on discarding outliers received over Linear Consensus Protocol (LCP). Although W-MSR provides well-understood theoretical guarantees relating robust network connectivity to the convergence of the underlying consensus, the method comes with several limitations preventing its use at scale: (1) the number of Byzantine robots, F, to tolerate should be known a priori, (2) the requirement that each robot maintains 2F+1 neighbors is impractical for large F, (3) information propagation is hindered by the requirement that F+1 robots independently make local measurements of the consensus property in order for the swarm's decision to change, and (4) W-MSR is specific to LCP and does not generalize to applications not implemented over LCP. In this work, we propose a Decentralized Blocklist Protocol (DBP) based on inter-robot accusations. Accusations are made on the basis of locally-made observations of misbehavior, and once shared by cooperative robots across the network are used as input to a graph matching algorithm that computes a blocklist. DBP generalizes to applications not implemented via LCP, is adaptive to the number of Byzantine robots, and allows for fast information propagation through the multi-robot system while simultaneously reducing the required network connectivity relative to W-MSR. On LCP-type applications, DBP reduces the worst-case connectivity requirement of W-MSR from (2F+1)-connected to (F+1)-connected and the number of cooperative observers required to propagate new information from F+1 to just 1 observer. We demonstrate empirically that our approach to Byzantine resilience scales to hundreds of robots on cooperative target tracking, time synchronization, and localization case studies.
READ FULL TEXT