Can Global Optimization Strategy Outperform Myopic Strategy for Bayesian Parameter Estimation?

07/01/2020
by   Juanping Zhu, et al.
0

Bayesian adaptive inference is widely used in psychophysics to estimate psychometric parameters. Most applications used myopic one-step ahead strategy which only optimizes the immediate utility. The widely held expectation is that global optimization strategies that explicitly optimize over some horizon can largely improve the performance of the myopic strategy. With limited studies that compared myopic and global strategies, the expectation was not challenged and researchers are still investing heavily to achieve global optimization. Is that really worthwhile? This paper provides a discouraging answer based on experimental simulations comparing the performance improvement and computation burden between global and myopic strategies in parameter estimation of multiple models. The finding is that the added horizon in global strategies has negligible contributions to the improvement of optimal global utility other than the most immediate next steps (of myopic strategy). Mathematical recursion is derived to prove that the contribution of utility improvement of each added horizon step diminishes fast as that step moves further into the future.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset