Cantonese Automatic Speech Recognition Using Transfer Learning from Mandarin

11/21/2019
by   Bryan Li, et al.
0

We propose a system to develop a basic automatic speech recognizer(ASR) for Cantonese, a low-resource language, through transfer learning of Mandarin, a high-resource language. We take a time-delayed neural network trained on Mandarin, and perform weight transfer of several layers to a newly initialized model for Cantonese. We experiment with the number of layers transferred, their learning rates, and pretraining i-vectors. Key findings are that this approach allows for quicker training time with less data. We find that for every epoch, log-probability is smaller for transfer learning models compared to a Cantonese-only model. The transfer learning models show slight improvement in CER.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset