CarDD: A New Dataset for Vision-based Car Damage Detection
Automatic car damage detection has attracted significant attention in the car insurance business. However, due to the lack of high-quality and publicly available datasets, we can hardly learn a feasible model for car damage detection. To this end, we contribute with the Car Damage Detection (CarDD), the first public large-scale dataset designed for vision-based car damage detection and segmentation. Our CarDD contains 4,000 high-resolution car damage images with over 9,000 wellannotated instances of six damage categories (examples are shown in Fig. 1). We detail the image collection, selection, and annotation processes, and present a statistical dataset analysis. Furthermore, we conduct extensive experiments on CarDD with state-of-theart deep methods for different tasks and provide comprehensive analysis to highlight the specialty of car damage detection.
READ FULL TEXT