Cascaded Filtering Using the Sigma Point Transformation (Extended Version)
It is often convenient to separate a state estimation task into smaller "local" tasks, where each local estimator estimates a subset of the overall system state. However, neglecting cross-covariance terms between state estimates can result in overconfident estimates, which can ultimately degrade the accuracy of the estimator. Common cascaded filtering techniques focus on the problem of modelling cross-covariances when the local estimators share a common state vector. This letter introduces a novel cascaded and decentralized filtering approach that approximates the cross-covariances when the local estimators consider distinct state vectors. The proposed estimator is validated in simulations and in experiments on a three-dimensional attitude and position estimation problem. The proposed approach is compared to a naive cascaded filtering approach that neglects cross-covariance terms, a sigma point-based Covariance Intersection filter, and a full-state filter. In both simulations and experiments, the proposed filter outperforms the naive and the Covariance Intersection filters, while performing comparatively to the full-state filter.
READ FULL TEXT