Causal Deep Information Bottleneck

07/06/2018
by   Sonali Parbhoo, et al.
0

Estimating causal effects in the presence of latent confounding is a frequently occurring problem in several tasks. In real world applications such as medicine, accounting for the effects of latent confounding is even more challenging as a result of high-dimensional and noisy data. In this work, we propose estimating the causal effect from the perspective of the information bottleneck principle by explicitly identifying a low-dimensional representation of latent confounding. In doing so, we prove theoretically that the proposed model can be used to recover the average causal effect. Experiments on both synthetic data and existing causal benchmarks illustrate that our method achieves state-of-the-art performance in terms of prediction accuracy and sample efficiency, without sacrificing interpretability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset