Causal Effect of Functional Treatment
Functional data often arise in the areas where the causal treatment effect is of interest. However, research concerning the effect of a functional variable on an outcome is typically restricted to exploring the association rather than the casual relationship. The generalized propensity score, often used to calibrate the selection bias, is not directly applicable to a functional treatment variable due to a lack of definition of probability density function for functional data. Based on the functional linear model for the average dose-response functional, we propose three estimators, namely, the functional stabilized weight estimator, the outcome regression estimator and the doubly robust estimator, each of which has its own merits. We study their theoretical properties, which are corroborated through extensive numerical experiments. A real data application on electroencephalography data and disease severity demonstrates the practical value of our methods.
READ FULL TEXT