Causal Mediation Analysis: Selection with Asymptotically Valid Inference
Researchers are often interested in learning not only the effect of treatments on outcomes, but also the pathways through which these effects operate. A mediator is a variable that is affected by treatment and subsequently affects outcome. Existing methods for penalized mediation analyses either assume that finite-dimensional linear models are sufficient to remove confounding bias, or perform no confounding control at all. In practice, these assumptions may not hold. We propose a method that considers the confounding functions as nuisance parameters to be estimated using data-adaptive methods. We then use a novel regularization method applied to this objective function to identify a set of important mediators. We derive the asymptotic properties of our estimator and establish the oracle property under certain assumptions. Asymptotic results are also presented in a local setting which contrast the proposal with the standard adaptive lasso. We also propose a perturbation bootstrap technique to provide asymptotically valid post-selection inference for the mediated effects of interest. The performance of these methods will be discussed and demonstrated through simulation studies.
READ FULL TEXT