Causal Structural Learning from Time Series: A Convex Optimization Approach

01/26/2023
by   Song Wei, et al.
0

Structural learning, which aims to learn directed acyclic graphs (DAGs) from observational data, is foundational to causal reasoning and scientific discovery. Recent advancements formulate structural learning into a continuous optimization problem; however, DAG learning remains a highly non-convex problem, and there has not been much work on leveraging well-developed convex optimization techniques for causal structural learning. We fill this gap by proposing a data-adaptive linear approach for causal structural learning from time series data, which can be conveniently cast into a convex optimization problem using a recently developed monotone operator variational inequality (VI) formulation. Furthermore, we establish non-asymptotic recovery guarantee of the VI-based approach and show the superior performance of our proposed method on structure recovery over existing methods via extensive numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset