Causally-Interpretable Random-Effects Meta-Analysis

02/07/2023
by   Justin M. Clark, et al.
0

Recent work has made important contributions in the development of causally-interpretable meta-analysis. These methods transport treatment effects estimated in a collection of randomized trials to a target population of interest. Ideally, estimates targeted toward a specific population are more interpretable and relevant to policy-makers and clinicians. However, between-study heterogeneity not arising from differences in the distribution of treatment effect modifiers can raise difficulties in synthesizing estimates across trials. The existence of such heterogeneity, including variations in treatment modality, also complicates the interpretation of transported estimates as a generic effect in the target population. We propose a conceptual framework and estimation procedures that attempt to account for such heterogeneity, and develop inferential techniques that aim to capture the accompanying excess variability in causal estimates. This framework also seeks to clarify the kind of treatment effects that are amenable to the techniques of generalizability and transportability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset