Certified Defenses: Why Tighter Relaxations May Hurt Training?

02/12/2021
by   Nikola Jovanović, et al.
0

Certified defenses based on convex relaxations are an established technique for training provably robust models. The key component is the choice of relaxation, varying from simple intervals to tight polyhedra. Paradoxically, however, it was empirically observed that training with tighter relaxations can worsen certified robustness. While several methods were designed to partially mitigate this issue, the underlying causes are poorly understood. In this work we investigate the above phenomenon and show that tightness may not be the determining factor for reduced certified robustness. Concretely, we identify two key features of relaxations that impact training dynamics: continuity and sensitivity. We then experimentally demonstrate that these two factors explain the drop in certified robustness when using popular relaxations. Further, we show, for the first time, that it is possible to successfully train with tighter relaxations (i.e., triangle), a result supported by our two properties. Overall, we believe the insights of this work can help drive the systematic discovery of new effective certified defenses.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset