Characterization of Frequent Online Shoppers using Statistical Learning with Sparsity
Developing shopping experiences that delight the customer requires businesses to understand customer taste. This work reports a method to learn the shopping preferences of frequent shoppers to an online gift store by combining ideas from retail analytics and statistical learning with sparsity. Shopping activity is represented as a bipartite graph. This graph is refined by applying sparsity-based statistical learning methods. These methods are interpretable and reveal insights about customers' preferences as well as products driving revenue to the store.
READ FULL TEXT