Checking Continuous Stochastic Logic against Quantum Continuous-Time Markov Chains

02/11/2022
by   Jingyi Mei, et al.
0

Verifying quantum systems has attracted a lot of interest in the last decades. In this paper, we study the quantitative model-checking of quantum continuous-time Markov chains (quantum CTMCs). The branching-time properties of quantum CTMCs are specified by continuous stochastic logic (CSL), which is famous for verifying real-time systems, including classical CTMCs. The core of checking the CSL formulas lies in tackling multiphase until formulas. We develop an algebraic method using proper projection, matrix exponentiation, and definite integration to symbolically calculate the probability measures of path formulas. Thus the decidability of CSL is established. To be efficient, numerical methods are incorporated to guarantee that the time complexity is polynomial in the encoding size of the input model and linear in the size of the input formula. A running example of Apollonian networks is further provided to demonstrate our method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset