Classification of auditory stimuli from EEG signals with a regulated recurrent neural network reservoir

04/27/2018
by   Marc-Antoine Moinnereau, et al.
0

The use of electroencephalogram (EEG) as the main input signal in brain-machine interfaces has been widely proposed due to the non-invasive nature of the EEG. Here we are specifically interested in interfaces that extract information from the auditory system and more specifically in the task of classifying heard speech from EEGs. To do so, we propose to limit the preprocessing of the EEGs and use machine learning approaches to automatically extract their meaningful characteristics. More specifically, we use a regulated recurrent neural network (RNN) reservoir, which has been shown to outperform classic machine learning approaches when applied to several different bio-signals, and we compare it with a deep neural network approach. Moreover, we also investigate the classification performance as a function of the number of EEG electrodes. A set of 8 subjects were presented randomly with 3 different auditory stimuli (English vowels a, i and u). We obtained an excellent classification rate of 83.2 rate of 81.7

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset