Classifier comparison using precision

09/29/2016
by   Lovedeep Gondara, et al.
0

New proposed models are often compared to state-of-the-art using statistical significance testing. Literature is scarce for classifier comparison using metrics other than accuracy. We present a survey of statistical methods that can be used for classifier comparison using precision, accounting for inter-precision correlation arising from use of same dataset. Comparisons are made using per-class precision and methods presented to test global null hypothesis of an overall model comparison. Comparisons are extended to multiple multi-class classifiers and to models using cross validation or its variants. Partial Bayesian update to precision is introduced when population prevalence of a class is known. Applications to compare deep architectures are studied.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro