Clubs and their applications

09/27/2022
by   Vito Napolitano, et al.
0

Clubs of rank k are well-celebrated objects in finite geometries introduced by Fancsali and Sziklai in 2006. After the connection with a special type of arcs known as KM-arcs, they renewed their interest. This paper aims to study clubs of rank n in PG(1,q^n). We provide a classification result for (n-2)-clubs of rank n, we analyze the Γ L(2,q^n)-equivalence of the known subspaces defining clubs, for some of them the problem is then translated in determining whether or not certain scattered spaces are equivalent. Then we find a polynomial description of the known families of clubs via some linearized polynomials. Then we apply our results to the theory of blocking sets, KM-arcs, polynomials and rank metric codes, obtaining new constructions and classification results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro