Co-Designing Statistical MIMO Radar and In-band Full-Duplex Multi-User MIMO Communications

06/26/2020
by   Jiawei Liu, et al.
0

We present a spectral co-design of a statistical multiple-input-multiple-output (MIMO) radar and an in-band full-duplex (IBFD) multi-user MIMO (MU-MIMO) communications system both of which concurrently operate within the same frequency band. Prior works on MIMO-radar-MIMO-communications (MRMC) problem either focus on colocated MIMO radars and half-duplex/single-user MIMO communications, seek coexistence solutions, do not jointly design waveforms and receiver processing or omit practical system constraints. Here, we jointly design statistical MIMO radar waveform, uplink (UL)/downlink (DL) precoders, and receive filters. To this end, we employ a novel performance measure, namely compounded-and-weighted sum mutual information (CWSM), that is subjected to multiple practical constraints of UL/DL transmit power, UL/DL quality of service, and peak-to-average-power-ratio. We solve the resulting non-convex problem by incorporating block coordinate descent (BCD) and alternating projection (AP) methods in a single algorithmic framework called BCD-AP MRMC. We achieve this by exploiting the relationship between mutual information and weighted minimum mean-squared-error (WMMSE), which allows use of the Lagrange dual problem in finding closed-form solutions for precoders and radar waveform. Numerical experiments show that our proposed WMMSE-based method quickly achieves monotonic convergence, improves target detection by 6-13 conventional radar coding, and provides 8.3-30 system than other precoding strategies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro