COEP: Cascade Optimization for Inverse Problems with Entropy-Preserving Hyperparameter Tuning
We propose COEP, an automated and principled framework to solve inverse problems with deep generative models. COEP consists of two components, a cascade algorithm for optimization and an entropy-preserving criterion for hyperparameter tuning. Through COEP, the two components build up an efficient and end-to-end solver for inverse problems that require no human evaluation. We establish theoretical guarantees for the proposed methods. We also empirically validate the strength of COEP on denoising and noisy compressed sensing, which are two fundamental tasks in inverse problems.
READ FULL TEXT