Combination of Time-domain, Frequency-domain, and Cepstral-domain Acoustic Features for Speech Commands Classification

03/30/2022
by   Yikang Wang, et al.
0

In speech-related classification tasks, frequency-domain acoustic features such as logarithmic Mel-filter bank coefficients (FBANK) and cepstral-domain acoustic features such as Mel-frequency cepstral coefficients (MFCC) are often used. However, time-domain features perform more effectively in some sound classification tasks which contain non-vocal or weakly speech-related sounds. We previously proposed a feature called bit sequence representation (BSR), which is a time-domain binary acoustic feature based on the raw waveform. Compared with MFCC, BSR performed better in environmental sound detection and showed comparable accuracy performance in limited-vocabulary speech recognition tasks. In this paper, we propose a novel improvement BSR feature called BSR-float16 to represent floating-point values more precisely. We experimentally demonstrated the complementarity among time-domain, frequency-domain, and cepstral-domain features using a dataset called Speech Commands proposed by Google. Therefore, we used a simple back-end score fusion method to improve the final classification accuracy. The fusion results also showed better noise robustness.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset