Community Detection in Random Networks

02/28/2013
by   Ery Arias-Castro, et al.
0

We formalize the problem of detecting a community in a network into testing whether in a given (random) graph there is a subgraph that is unusually dense. We observe an undirected and unweighted graph on N nodes. Under the null hypothesis, the graph is a realization of an Erdös-Rényi graph with probability p0. Under the (composite) alternative, there is a subgraph of n nodes where the probability of connection is p1 > p0. We derive a detection lower bound for detecting such a subgraph in terms of N, n, p0, p1 and exhibit a test that achieves that lower bound. We do this both when p0 is known and unknown. We also consider the problem of testing in polynomial-time. As an aside, we consider the problem of detecting a clique, which is intimately related to the planted clique problem. Our focus in this paper is in the quasi-normal regime where n p0 is either bounded away from zero, or tends to zero slowly.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset