Completely random measures for modeling power laws in sparse graphs

03/22/2016
by   Diana Cai, et al.
0

Network data appear in a number of applications, such as online social networks and biological networks, and there is growing interest in both developing models for networks as well as studying the properties of such data. Since individual network datasets continue to grow in size, it is necessary to develop models that accurately represent the real-life scaling properties of networks. One behavior of interest is having a power law in the degree distribution. However, other types of power laws that have been observed empirically and considered for applications such as clustering and feature allocation models have not been studied as frequently in models for graph data. In this paper, we enumerate desirable asymptotic behavior that may be of interest for modeling graph data, including sparsity and several types of power laws. We outline a general framework for graph generative models using completely random measures; by contrast to the pioneering work of Caron and Fox (2015), we consider instantiating more of the existing atoms of the random measure as the dataset size increases rather than adding new atoms to the measure. We see that these two models can be complementary; they respectively yield interpretations as (1) time passing among existing members of a network and (2) new individuals joining a network. We detail a particular instance of this framework and show simulated results that suggest this model exhibits some desirable asymptotic power-law behavior.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset