Computing equilibria by minimizing exploitability with best-response ensembles

01/20/2023
by   Carlos Martin, et al.
0

In this paper, we study the problem of computing an approximate Nash equilibrium of a continuous game. Such games naturally model many situations involving space, time, money, and other fine-grained resources or quantities. The standard measure of the closeness of a strategy profile to Nash equilibrium is exploitability, which measures how much utility players can gain from changing their strategy unilaterally. We introduce a new equilibrium-finding method that minimizes an approximation of the exploitability. This approximation employs a best-response ensemble for each player that maintains multiple candidate best responses for that player. In each iteration, the best-performing element of each ensemble is used in a gradient-based scheme to update the current strategy profile. The strategy profile and best-response ensembles are simultaneously trained to minimize and maximize the approximate exploitability, respectively. Experiments on a suite of benchmark games show that it outperforms previous methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro