Conductivity Imaging from Internal Measurements with Mixed Least-Squares Deep Neural Networks
In this work we develop a novel approach using deep neural networks to reconstruct the conductivity distribution in elliptic problems from one internal measurement. The approach is based on a mixed reformulation of the governing equation and utilizes the standard least-squares objective to approximate the conductivity and flux simultaneously, with deep neural networks as ansatz functions. We provide a thorough analysis of the neural network approximations for both continuous and empirical losses, including rigorous error estimates that are explicit in terms of the noise level, various penalty parameters and neural network architectural parameters (depth, width and parameter bound). We also provide extensive numerical experiments in two- and multi-dimensions to illustrate distinct features of the approach, e.g., excellent stability with respect to data noise and capability of solving high-dimensional problems.
READ FULL TEXT