Conformal Prediction Under Covariate Shift

04/12/2019
by   Rina Foygel Barber, et al.
0

We extend conformal prediction methodology beyond the case of exchangeable data. In particular, we show that a weighted version of conformal prediction can be used to compute distribution-free prediction intervals for problems in which the test and training covariate distributions differ, but the likelihood ratio between these two distributions is known---or, in practice, can be estimated accurately with access to a large set of unlabeled data (test covariate points). Our weighted extension of conformal prediction also applies more generally, to settings in which the data satisfies a certain weighted notion of exchangeability. We discuss other potential applications of our new conformal methodology, including latent variable and missing data problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset