Connectivity-Preserving Coordination Control of Multi-Agent Systems with Time-Varying Delays

03/21/2018
by   Yuan Yang, et al.
0

This paper presents a distributed position synchronization strategy that also preserves the initial communication links for single-integrator multi-agent systems with time-varying delays. The strategy employs a coordinating proportional control derived from a specific type of potential energy, augmented with damping injected through a dynamic filter. The injected damping maintains all agents within the communication distances of their neighbours, and asymptotically stabilizes the multi-agent system, in the presence of time delays. Regarding the closed-loop single-integrator multi-agent system as a double-integrator system suggests an extension of the proposed strategy to connectivity-preserving coordination of Euler-Lagrange networks with time-varying delays. Lyapunov stability analysis and simulation results validate the two designs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro