Consistent nonparametric change point detection combining CUSUM and marked empirical processes

01/24/2019
by   Maria Mohr, et al.
0

A weakly dependent time series regression model with multivariate covariates and univariate observations is considered, for which we develop a procedure to detect whether the nonparametric conditional mean function is stable in time against change point alternatives. Our proposal is based on a modified CUSUM type test procedure, which uses a sequential marked empirical process of residuals. We show weak convergence of the considered process to a centered Gaussian process under the null hypothesis of no change in the mean function and a stationarity assumption. This requires some sophisticated arguments for sequential empirical processes of weakly dependent variables. As a consequence we obtain convergence of Kolmogorov-Smirnov and Cramér-von Mises type test statistics. The proposed procedure acquires a very simple limiting distribution and nice consistency properties, features from which related tests are lacking. We moreover suggest a bootstrap version of the procedure and discuss its applicability in the case of unstable variances.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset