Constrained Variational Policy Optimization for Safe Reinforcement Learning
Safe reinforcement learning (RL) aims to learn policies that satisfy certain constraints before deploying to safety-critical applications. Primal-dual as a prevalent constrained optimization framework suffers from instability issues and lacks optimality guarantees. This paper overcomes the issues from a novel probabilistic inference perspective and proposes an Expectation-Maximization style approach to learn safe policy. We show that the safe RL problem can be decomposed to 1) a convex optimization phase with a non-parametric variational distribution and 2) a supervised learning phase. We show the unique advantages of constrained variational policy optimization by proving its optimality and policy improvement stability. A wide range of experiments on continuous robotic tasks show that the proposed method achieves significantly better performance in terms of constraint satisfaction and sample efficiency than primal-dual baselines.
READ FULL TEXT