Construction Methods Based Minimum Weight Distribution for Polar Codes with Successive Cancellation List Decoding
In this paper, we focus on the construction methods based MWD for polar codes to improve the performance with successive cancellation list (SCL) decoding. We first propose an ordered and nested reliability sequence, namely MWD sequence, to improve the ML performance of polar codes and apply fast construction without the original channel information. In the MWD sequence, the synthetic channels are sorted by the partial MWD which is used to evaluate the influence of information bit on MWD and we prove the MWD sequence is the optimum sequence under ML decoding. Then, since the list size of SCL decoding is limited, we introduce an entropy constraint to establish a relationship between the list size and the ML performance and propose a heuristic and greedy construction method named bit grouping reorder based MWD (BGR-MWD) algorithm. In the algorithm, we divide the synthetic channels into groups by the partial MWD and greedily reorder the synthetic channels in some groups until the entropy constraint is satisfied. The simulation results show the MWD sequence is suitable for constructing polar codes with short code length. Meanwhile, the BGR-MWD algorithm has superior performance over the traditional construction methods for long code length.
READ FULL TEXT