Contextualization for the Organization of Text Documents Streams

There has been a significant effort by the research community to address the problem of providing methods to organize documentation with the help of information Retrieval methods. In this report paper, we present several experiments with some stream analysis methods to explore streams of text documents. We use only dynamic algorithms to explore, analyze, and organize the flux of text documents. This document shows a case study with developed architectures of a Text Document Stream Organization, using incremental algorithms like Incremental TextRank, and IS-TFIDF. Both these algorithms are based on the assumption that the mapping of text documents and their document-term matrix in lower-dimensional evolving networks provides faster processing when compared to batch algorithms. With this architecture, and by using FastText Embedding to retrieve similarity between documents, we compare methods with large text datasets and ground truth evaluation of clustering capacities. The datasets used were Reuters and COVID-19 emotions. The results provide a new view for the contextualization of similarity when approaching flux of documents organization tasks, based on the similarity between documents in the flux, and by using mentioned algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset