Continuous black-box optimization with quantum annealing and random subspace coding
A black-box optimization algorithm such as Bayesian optimization finds extremum of an unknown function by alternating inference of the underlying function and optimization of an acquisition function. In a high-dimensional space, such algorithms perform poorly due to the difficulty of acquisition function optimization. Herein, we apply quantum annealing (QA) to overcome the difficulty in the continuous black-box optimization. As QA specializes in optimization of binary problems, a continuous vector has to be encoded to binary, and the solution of QA has to be translated back. Our method has the following three parts: 1) Random subspace coding based on axis-parallel hyperrectangles from continuous vector to binary vector. 2) A quadratic unconstrained binary optimization (QUBO) defined by acquisition function based on nonnegative-weighted linear regression model which is solved by QA. 3) A penalization scheme to ensure that the QA solution can be translated back. It is shown in benchmark tests that its performance using D-Wave Advantage^ TM quantum annealer is competitive with a state-of-the-art method based on the Gaussian process in high-dimensional problems. Our method may open up a new possibility of quantum annealing and other QUBO solvers including quantum approximate optimization algorithm (QAOA) using a gated-quantum computers, and expand its range of application to continuous-valued problems.
READ FULL TEXT