Contracting Skeletal Kinematic Embeddings for Anomaly Detection

01/23/2023
by   Alessandro Flaborea, et al.
0

Detecting the anomaly of human behavior is paramount to timely recognizing endangering situations, such as street fights or elderly falls. However, anomaly detection is complex, since anomalous events are rare and because it is an open set recognition task, i.e., what is anomalous at inference has not been observed at training. We propose COSKAD, a novel model which encodes skeletal human motion by an efficient graph convolutional network and learns to COntract SKeletal kinematic embeddings onto a latent hypersphere of minimum volume for Anomaly Detection. We propose and analyze three latent space designs for COSKAD: the commonly-adopted Euclidean, and the new spherical-radial and hyperbolic volumes. All three variants outperform the state-of-the-art, including video-based techniques, on the ShangaiTechCampus, the Avenue, and on the most recent UBnormal dataset, for which we contribute novel skeleton annotations and the selection of human-related videos. The source code and dataset will be released upon acceptance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset