Convergent estimators of variance of a spatial mean in the presence of missing observations

04/09/2023
by   Ashwin K Seshadri, et al.
0

In the geosciences, a recurring problem is one of estimating spatial means of a physical field using weighted averages of point observations. An important variant is when individual observations are counted with some probability less than one. This can occur in different contexts: from missing data to estimating the statistics across subsamples. In such situations, the spatial mean is a ratio of random variables, whose statistics involve approximate estimators derived through series expansion. The present paper considers truncated estimators of variance of the spatial mean and their general structure in the presence of missing data. To all orders, the variance estimator depends only on the first and second moments of the underlying field, and convergence requires these moments to be finite. Furthermore, convergence occurs if either the probability of counting individual observations is larger than 1/2 or the number of point observations is large. In case the point observations are weighted uniformly, the estimators are easily found using combinatorics and involve Stirling numbers of the second kind.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset