Convolution Neural Network Hyperparameter Optimization Using Simplified Swarm Optimization
Among the machine learning approaches applied in computer vision, Convolutional Neural Network (CNN) is widely used in the field of image recognition. However, although existing CNN models have been proven to be efficient, it is not easy to find a network architecture with better performance. Some studies choose to optimize the network architecture, while others chose to optimize the hyperparameters, such as the number and size of convolutional kernels, convolutional strides, pooling size, etc. Most of them are designed manually, which requires relevant expertise and takes a lot of time. Therefore, this study proposes the idea of applying Simplified Swarm Optimization (SSO) on the hyperparameter optimization of LeNet models while using MNIST, Fashion MNIST, and Cifar10 as validation. The experimental results show that the proposed algorithm has higher accuracy than the original LeNet model, and it only takes a very short time to find a better hyperparameter configuration after training. In addition, we also analyze the output shape of the feature map after each layer, and surprisingly, the results were mostly rectangular. The contribution of the study is to provide users with a simpler way to get better results with the existing model., and this study can also be applied to other CNN architectures.
READ FULL TEXT