Convolutions Through the Lens of Tensor Networks
Despite their simple intuition, convolutions are more tedious to analyze than dense layers, which complicates the generalization of theoretical and algorithmic ideas. We provide a new perspective onto convolutions through tensor networks (TNs) which allow reasoning about the underlying tensor multiplications by drawing diagrams, and manipulating them to perform function transformations, sub-tensor access, and fusion. We demonstrate this expressive power by deriving the diagrams of various autodiff operations and popular approximations of second-order information with full hyper-parameter support, batching, channel groups, and generalization to arbitrary convolution dimensions. Further, we provide convolution-specific transformations based on the connectivity pattern which allow to re-wire and simplify diagrams before evaluation. Finally, we probe computational performance, relying on established machinery for efficient TN contraction. Our TN implementation speeds up a recently-proposed KFAC variant up to 4.5x and enables new hardware-efficient tensor dropout for approximate backpropagation.
READ FULL TEXT