Coordinate Descent Methods for Symmetric Nonnegative Matrix Factorization

09/04/2015
by   Arnaud Vandaele, et al.
0

Given a symmetric nonnegative matrix A, symmetric nonnegative matrix factorization (symNMF) is the problem of finding a nonnegative matrix H, usually with much fewer columns than A, such that A ≈ HH^T. SymNMF can be used for data analysis and in particular for various clustering tasks. In this paper, we propose simple and very efficient coordinate descent schemes to solve this problem, and that can handle large and sparse input matrices. The effectiveness of our methods is illustrated on synthetic and real-world data sets, and we show that they perform favorably compared to recent state-of-the-art methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset