Correcting public opinion trends through Bayesian data assimilation
Measuring public opinion is a key focus during democratic elections, enabling candidates to gauge their popularity and alter their campaign strategies accordingly. Traditional survey polling remains the most popular estimation technique, despite its cost and time intensity, measurement errors, lack of real-time capabilities and lagged representation of public opinion. In recent years, Twitter opinion mining has attempted to combat these issues. Despite achieving promising results, it experiences its own set of shortcomings such as an unrepresentative sample population and a lack of long term stability. This paper aims to merge data from both these techniques using Bayesian data assimilation to arrive at a more accurate estimate of true public opinion for the Brexit referendum. This paper demonstrates the effectiveness of the proposed approach using Twitter opinion data and survey data from trusted pollsters. Firstly, the possible existence of a time gap of 16 days between the two data sets is identified. This gap is subsequently incorporated into a proposed assimilation architecture. This method was found to adequately incorporate information from both sources and measure a strong upward trend in Leave support leading up to the Brexit referendum. The proposed technique provides useful estimates of true opinion, which is essential to future opinion measurement and forecasting research.
READ FULL TEXT