Cost-sensitive Hierarchical Clustering for Dynamic Classifier Selection

12/14/2020
by   Meinolf Sellmann, et al.
0

We consider the dynamic classifier selection (DCS) problem: Given an ensemble of classifiers, we are to choose which classifier to use depending on the particular input vector that we get to classify. The problem is a special case of the general algorithm selection problem where we have multiple different algorithms we can employ to process a given input. We investigate if a method developed for general algorithm selection named cost-sensitive hierarchical clustering (CSHC) is suited for DCS. We introduce some additions to the original CSHC method for the special case of choosing a classification algorithm and evaluate their impact on performance. We then compare with a number of state-of-the-art dynamic classifier selection methods. Our experimental results show that our modified CSHC algorithm compares favorably

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset