Cross-Spectral Periocular Recognition with Conditional Adversarial Networks

08/26/2020
by   Kevin Hernandez-Diaz, et al.
0

This work addresses the challenge of comparing periocular images captured in different spectra, which is known to produce significant drops in performance in comparison to operating in the same spectrum. We propose the use of Conditional Generative Adversarial Networks, trained to con-vert periocular images between visible and near-infrared spectra, so that biometric verification is carried out in the same spectrum. The proposed setup allows the use of existing feature methods typically optimized to operate in a single spectrum. Recognition experiments are done using a number of off-the-shelf periocular comparators based both on hand-crafted features and CNN descriptors. Using the Hong Kong Polytechnic University Cross-Spectral Iris Images Database (PolyU) as benchmark dataset, our experiments show that cross-spectral performance is substantially improved if both images are converted to the same spectrum, in comparison to matching features extracted from images in different spectra. In addition to this, we fine-tune a CNN based on the ResNet50 architecture, obtaining a cross-spectral periocular performance of EER=1 GAR>99 database.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset