Cross-Subject Statistical Shift Estimation for Generalized Electroencephalography-based Mental Workload Assessment
Assessment of mental workload in real world conditions is key to ensure the performance of workers executing tasks which demand sustained attention. Previous literature has employed electroencephalography (EEG) to this end. However, EEG correlates of mental workload vary across subjects and physical strain, thus making it difficult to devise models capable of simultaneously presenting reliable performance across users. The field of domain adaptation (DA) aims at developing methods that allow for generalization across different domains by learning domain-invariant representations. Such DA methods, however, rely on the so-called covariate shift assumption, which typically does not hold for EEG-based applications. As such, in this paper we propose a way to measure the statistical (marginal and conditional) shift observed on data obtained from different users and use this measure to quantitatively assess the effectiveness of different adaptation strategies. In particular, we use EEG data collected from individuals performing a mental task while running in a treadmill and explore the effects of different normalization strategies commonly used to mitigate cross-subject variability. We show the effects that different normalization schemes have on statistical shifts and their relationship with the accuracy of mental workload prediction as assessed on unseen participants at train time.
READ FULL TEXT