CUBE – Towards an Optimal Scaling of Cosmological N-body Simulations

03/09/2020
by   Shenggan Cheng, et al.
0

N-body simulations are essential tools in physical cosmology to understand the large-scale structure (LSS) formation of the Universe. Large-scale simulations with high resolution are important for exploring the substructure of universe and for determining fundamental physical parameters like neutrino mass. However, traditional particle-mesh (PM) based algorithms use considerable amounts of memory, which limits the scalability of simulations. Therefore, we designed a two-level PM algorithm CUBE towards optimal performance in memory consumption reduction. By using the fixed-point compression technique, CUBE reduces the memory consumption per N-body particle toward 6 bytes, an order of magnitude lower than the traditional PM-based algorithms. We scaled CUBE to 512 nodes (20,480 cores) on an Intel Cascade Lake based supercomputer with ≃95% weak-scaling efficiency. This scaling test was performed in "Cosmo-π" – a cosmological LSS simulation using ≃4.4 trillion particles, tracing the evolution of the universe over ≃13.7 billion years. To our best knowledge, Cosmo-π is the largest completed cosmological N-body simulation. We believe CUBE has a huge potential to scale on exascale supercomputers for larger simulations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro