Curvature corrected tangent space-based approximation of manifold-valued data

06/01/2023
by   Willem Diepeveen, et al.
0

When generalizing schemes for real-valued data approximation or decomposition to data living in Riemannian manifolds, tangent space-based schemes are very attractive for the simple reason that these spaces are linear. An open challenge is to do this in such a way that the generalized scheme is applicable to general Riemannian manifolds, is global-geometry aware and is computationally feasible. Existing schemes have been unable to account for all three of these key factors at the same time. In this work, we take a systematic approach to developing a framework that is able to account for all three factors. First, we will restrict ourselves to the – still general – class of symmetric Riemannian manifolds and show how curvature affects general manifold-valued tensor approximation schemes. Next, we show how the latter observations can be used in a general strategy for developing approximation schemes that are also global-geometry aware. Finally, having general applicability and global-geometry awareness taken into account we restrict ourselves once more in a case study on low-rank approximation. Here we show how computational feasibility can be achieved and propose the curvature-corrected truncated higher-order singular value decomposition (CC-tHOSVD), whose performance is subsequently tested in numerical experiments with both synthetic and real data living in symmetric Riemannian manifolds with both positive and negative curvature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset