Cutting Barnette graphs perfectly is hard

02/22/2023
by   Édouard Bonnet, et al.
0

A perfect matching cut is a perfect matching that is also a cutset, or equivalently a perfect matching containing an even number of edges on every cycle. The corresponding algorithmic problem, Perfect Matching Cut, is known to be NP-complete in subcubic bipartite graphs [Le Telle, TCS '22] but its complexity was open in planar graphs and in cubic graphs. We settle both questions at once by showing that Perfect Matching Cut is NP-complete in 3-connected cubic bipartite planar graphs or Barnette graphs. Prior to our work, among problems whose input is solely an undirected graph, only Distance-2 4-Coloring was known NP-complete in Barnette graphs. Notably, Hamiltonian Cycle would only join this private club if Barnette's conjecture were refuted.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset