DAG-Recurrent Neural Networks For Scene Labeling

09/02/2015
by   Bing Shuai, et al.
0

In image labeling, local representations for image units are usually generated from their surrounding image patches, thus long-range contextual information is not effectively encoded. In this paper, we introduce recurrent neural networks (RNNs) to address this issue. Specifically, directed acyclic graph RNNs (DAG-RNNs) are proposed to process DAG-structured images, which enables the network to model long-range semantic dependencies among image units. Our DAG-RNNs are capable of tremendously enhancing the discriminative power of local representations, which significantly benefits the local classification. Meanwhile, we propose a novel class weighting function that attends to rare classes, which phenomenally boosts the recognition accuracy for non-frequent classes. Integrating with convolution and deconvolution layers, our DAG-RNNs achieve new state-of-the-art results on the challenging SiftFlow, CamVid and Barcelona benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro