DAGformer: Directed Acyclic Graph Transformer

10/24/2022
by   Yuankai Luo, et al.
0

In many fields, such as natural language processing and computer vision, the Transformer architecture has become the standard. Recently, the Transformer architecture has also attracted a growing amount of interest in graph representation learning since it naturally overcomes some graph neural network (GNNs) restrictions. In this work, we focus on a special yet widely used class of graphs-DAGs. We propose the directed acyclic graph Transformer, DAGformer, a Transformer architecture that processes information according to the reachability relation defined by the partial order. DAGformer is simple and flexible, allowing it to be used with various transformer-based models. We show that our architecture achieves state-of-the-art performance on representative DAG datasets, outperforming all previous approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro