DAGNN: Demand-aware Graph Neural Networks for Session-based Recommendation

05/30/2021
by   Liqi Yang, et al.
0

Session-based recommendations have been widely adopted for various online video and E-commerce Websites. Most existing approaches are intuitively proposed to discover underlying interests or preferences out of the anonymous session data. This apparently ignores the fact these sequential behaviors usually reflect session user's potential demand, i.e., a semantic level factor, and therefore how to estimate underlying demands from a session is challenging. To address aforementioned issue, this paper proposes a demand-aware graph neural networks (DAGNN). Particularly, a demand modeling component is designed to first extract session demand and the underlying multiple demands of each session is estimated using the global demand matrix. Then, the demand-aware graph neural network is designed to extract session demand graph to learn the demand-aware item embedddings for the later recommendations. The mutual information loss is further designed to enhance the quality of the learnt embeddings. Extensive experiments are evaluated on several real-world datasets and the proposed model achieves the SOTA model performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset