Data-Driven Finite Elements Methods: Machine Learning Acceleration of Goal-Oriented Computations
We introduce the concept of data-driven finite element methods. These are finite-element discretizations of partial differential equations (PDEs) that resolve quantities of interest with striking accuracy, regardless of the underlying mesh size. The methods are obtained within a machine-learning framework during which the parameters defining the method are tuned against available training data. In particular, we use a stable parametric Petrov-Galerkin method that is equivalent to a minimal-residual formulation using a weighted norm. While the trial space is a standard finite element space, the test space has parameters that are tuned in an off-line stage. Finding the optimal test space therefore amounts to obtaining a goal-oriented discretization that is completely tailored towards the quantity of interest. As is natural in deep learning, we use an artificial neural network to define the parametric family of test spaces. Using numerical examples for the Laplacian and advection equation in one and two dimensions, we demonstrate that the data-driven finite element method has superior approximation of quantities of interest even on very coarse meshes
READ FULL TEXT