Data Integration Via Analysis of Subspaces (DIVAS)

12/01/2022
by   Jack Prothero, et al.
0

Modern data collection in many data paradigms, including bioinformatics, often incorporates multiple traits derived from different data types (i.e. platforms). We call this data multi-block, multi-view, or multi-omics data. The emergent field of data integration develops and applies new methods for studying multi-block data and identifying how different data types relate and differ. One major frontier in contemporary data integration research is methodology that can identify partially-shared structure between sub-collections of data types. This work presents a new approach: Data Integration Via Analysis of Subspaces (DIVAS). DIVAS combines new insights in angular subspace perturbation theory with recent developments in matrix signal processing and convex-concave optimization into one algorithm for exploring partially-shared structure. Based on principal angles between subspaces, DIVAS provides built-in inference on the results of the analysis, and is effective even in high-dimension-low-sample-size (HDLSS) situations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset