Dataset Size Dependence of Rate-Distortion Curve and Threshold of Posterior Collapse in Linear VAE
In the Variational Autoencoder (VAE), the variational posterior often aligns closely with the prior, which is known as posterior collapse and hinders the quality of representation learning. To mitigate this problem, an adjustable hyperparameter beta has been introduced in the VAE. This paper presents a closed-form expression to assess the relationship between the beta in VAE, the dataset size, the posterior collapse, and the rate-distortion curve by analyzing a minimal VAE in a high-dimensional limit. These results clarify that a long plateau in the generalization error emerges with a relatively larger beta. As the beta increases, the length of the plateau extends and then becomes infinite beyond a certain beta threshold. This implies that the choice of beta, unlike the usual regularization parameters, can induce posterior collapse regardless of the dataset size. Thus, beta is a risky parameter that requires careful tuning. Furthermore, considering the dataset-size dependence on the rate-distortion curve, a relatively large dataset is required to obtain a rate-distortion curve with high rates. Extensive numerical experiments support our analysis.
READ FULL TEXT