Decentralized Distributed Learning with Privacy-Preserving Data Synthesis

06/20/2022
by   Matteo Pennisi, et al.
0

In the medical field, multi-center collaborations are often sought to yield more generalizable findings by leveraging the heterogeneity of patient and clinical data. However, recent privacy regulations hinder the possibility to share data, and consequently, to come up with machine learning-based solutions that support diagnosis and prognosis. Federated learning (FL) aims at sidestepping this limitation by bringing AI-based solutions to data owners and only sharing local AI models, or parts thereof, that need then to be aggregated. However, most of the existing federated learning solutions are still at their infancy and show several shortcomings, from the lack of a reliable and effective aggregation scheme able to retain the knowledge learned locally to weak privacy preservation as real data may be reconstructed from model updates. Furthermore, the majority of these approaches, especially those dealing with medical data, relies on a centralized distributed learning strategy that poses robustness, scalability and trust issues. In this paper we present a decentralized distributed method that, exploiting concepts from experience replay and generative adversarial research, effectively integrates features from local nodes, providing models able to generalize across multiple datasets while maintaining privacy. The proposed approach is tested on two tasks - tuberculosis and melanoma classification - using multiple datasets in order to simulate realistic non-i.i.d. data scenarios. Results show that our approach achieves performance comparable to both standard (non-federated) learning and federated methods in their centralized (thus, more favourable) formulation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset